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f = 10” , and Fig. 2 c for f = lo”. The curves represented in Fig. 2 a are characteristic 
for a single-layered shell, and in Fig. 2 b and c for shells on an elastic basis. AS the 

stiffness of the soft layers increases, the surface character of the buckling is spoiled more 

and more. The mode corresponding to the critical load is hence axisymmetric. 
A further increase in the stiffness of the soft layers results in a new change in the cha- 

racrer of the buckling. For a comparable stiffness of the “stiff” and “soft” layers, the 
shell starts to behave as a monolith, and the dependences of the bifurcation values of the 
loads have a form analogous to that presented in Fig. 2 a ; the buckling mode is again 

not axisymmetric. 
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A large amount of literature (for example, see the surveys in [l, 21) has been 
devoted to the motion of a heavy rigid body around a fixed point. The present 
paper is based on a simple concept, permitting us to use the methods of invest- 
igating systems with nonlinearly connected oscillators [3-51 for the study of a 
specific Hamiltonian system with three degrees of freedom, namely, a rigid body 

moving around a fixed point. This concept is that when no constraints are im- 
posed on the initial conditions, excluding small motions near the equilibrium 
position (and such motions are all the general cases of integrability: Euler-Poinsot, 
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Lagrange-Poisson, Kowalewska, in which no constraints whatsoever are imposed 
on the initial conditions,and the majority of the well-known special cases of integra- 
bility), we can at first study the small oscillations near the equilibrium point. Then the 

integrals of the problem of small oscillations can be used as “sprouts” of the inte- 

grals for the complete nonlinear problem of obtaining the integrals of the origi- 
nal problem of the motion of the heavy rigid body around a fixed point. 

We consider the problem of the linear integrals [6-91 from this point of view. 
The statement of the problem of the existence of conditions for the linear inte- 

grals for the equations of motion of a heavy body is due to Chaplygin l-61. The 
investigation in [S] was developed in [8], and under certain constraints widely 

used in papers of the dynamics of a rigid body, the question of the existence con- 
ditions and the form of the linear integrals received an exhaustive examination 

in C91. 
It is of interest to understand the nature of at least some of those cases when 

in the complex nonlinear system of Euler-Poisson equations there arise simple 
linear relations between the variables, which are preserved during the whole 
time of the motion. It is natural to relate this with some “degeneracy” of the 

system of equations, arising for specific values of the system parameters (and 

sometimes also for specific initial conditions). It is well known [lo] that if the 
characteristic equation of the linear (the linearized) system has a zero root, then 
a linear integral appears. Below we have shown how we can obtain the existence 
conditions and the form of the linear integrals in certain well known cases from 
the fact that a zero “frequency” occurs in the equations of smalloscillations of 
the rigid body next to a stable equilibrium position_ We make note also of other 
additional degeneracies (rksonance relations) which occur in certain cases. 

The question being considered is closely related to Poincare s question on the 
existence conditions for the “fourth algebraic integral” in the problem of motion 
of a rigid body around a fixed point (see [ 1, 21) . 

We consider the Euler-Poisson equations in the usual notation [l], choosing the units 
of measurement so that the body’s weight equals unity 

A dt - (B - C) qr = yoy” - zoy 
dy i 

ABC, pqr, 

dt = ry’ - qy” roYozo* TT’T” ) (1) 

Let 
Yo = 0 (2) 

Then the stable equilibrium position (the “suspended”state) in whose neighborhood we 

linearize Eq. (1) is characterized by the conditions (2 is the distance from the point 
of suspension to the center of gravity) 

yn’ = 0, zoyo = ZOYO”, zoyo + ZOYO” = 1, (I=VGG% (3) 

Now let P, q, r be small and let the direction cosines y, y’, y” differ slightly from 
the values at the equilibrium position, characterized by relations (3). The the linearized 

equations of motion can be written thus: 
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$&(+)p+(~jreo, g++q=~ 

We do not compute here the analogous equations for y, y’, y” . From the characteristic 
equation. for the square of the “fcequeney” we obtain 

A&J + Czn2 I 
a12 ccc 

ACI * 
@‘a =x, 0a2=0 

by the linear replacement 

Z+p++, R z-= - zcp + xor, q--q 

system (4) can be presented as 

@R 
x-b@i2R=0, 

d2q 
~ c w&l = 0, 

d”P 
T--O 

From among the solutions of the third equation in system (5). corresponding to the zero 
coot od the characteristic equation (zero frequency), we should consider dP I dt = 0 
(the constant of integration equals zero by virtue of the linear equations, as is not diffi- 
cult to see with the aid of Eqs. (1)). For the linearized equations we have 

P=$-p++=const (6) 

Let us consider the derivative of P relative to the complete nonlinear Eqs. (1) (we 
denote this derivative by P’) 

” = AC J-1 , r=qIzo(f3--C)++o(A--)pj (7) 

The condition obtained by equating this expression to zero is the condition for the exis- 
tence of the linear integral (6) for the nonlinear Eqs. (1). 

Let us consider the individual eases when P’ = 0, i.e. when Z = 0. It is interesting 
to note that the expression Z = 0 is a special (for ’ y,, = 0) form of the Staude cone 

whose generators ace the axes of permanent rotation of the heavy rigid body. Further, 

let 
z,, (B - C) r + z. (A - B) p = 0 (8) 

Then the integral (6) being considered can be written as 

P=p 
A (B - C) x02 - C (A - B) zo2 

AC (B - C) $0 

Besides the ease p (t) = con&, which we leave aside, this is possible only when 

d (B - C) z,,s - C (A - B) %s = 0 (9) 

Thus we arrive at a relation which together with condition (2) characterizes the Hess- 

Appelrot case (the loxodcomic pendulum). Here P = 0, which can easily be tcans- 

formed to the usual Cl, 71 form of the particular linear integral in the case being con- 

sidered 
Ax,p + Czar = 0 (10) 

Note 1. It is interesting to note that condition (9) can be rewritten as: 

ASo + Czo% = E 
ACI 

B , i.e. 03 =@a2 

Note 2. Condition (8) can be obtained from (9) and (lo), i.e. it is not independent. 
We return now to system (4) from which we see that for x0 = 0 the equations of first 
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approximation have the integral 
r = r. = const (if) 

Relative to the complete equations we have 
dr A-B -- 

dt - dt pq (m 

Therefore, integral (11) of the linear system can be the integral of the complete system 

in one of the following cases (the cases when at least two of the conditions (13) - (15) 
are fulfilled simultaneously are not examined here as being very special): 

A=B (13) 

q (t) = 0 (14) 

P (t) = 0 (15) 

Relation (13). together with the conditions z 0 = y0 = 0 under which it is obtained, 
characterizes the Lagrange-Poisson case for which the integral (11) was obtained by 

Lagrange. 
Note 3. Under the Lagrange case conditions, o1 = oz. Further, under 

(14). r = r. follows from (12). Therefore, from Eq. (l), for p we have 

dp ZOY -- 
dt --A 

condition 

(16) 

On the other hand, from the equation for q we obtain, under condition (14). 

zor 
P” ro(A-CC) 

Having differentiated this equality,by virtue of (1). we obtain dpldt = zoT’/(A - 0 
Comparing this expression with (16) shows that the condition C = 2 A should be ful- 
filled (if we discard the degenerateecases when z,, = 0 or y’ (t) = 0). Thus, we arrive 
at the conditions for the Bobylev-Steklov case (in the form given by Bobylev). namely, 

zO=yO=O, C=2A, q(t)=0 (17) 

when the linear integral (11) exists. 
Note 4. An analogous study of condition (15) leads to the fact that for the exist- 

ence of integral (11) we require, along with the conditions r 0 = &, = 0, the fulfillment 

of the condition C = 2B which differs from the case just examined by a change of 
notation. 

If we return to (8) arid take A = B, we get x0 (B - C)r = U. This is possible in the 
foll,owing cases : 

a) x,, = 0 (we again arrive at the Lagrange-Poisson case conditions); 
b) B = C (the case of spherical symmetry ; here holds the integral P, = HOP -I- 

zor = const); 

c) r (t) = 0 <an analysis of this condition leads to one of the cases of permanent 
rotation). 

Thus, by a study of the linear approximation equations we have found linear integrals 
which under definite conditions turn out to be the integrals of the complete nonlinear 
system of eqautions of motion of a heavy rigid body around a fixed point. By this way 
in the present paper we have obtained the existence conditions and the form of the lin- 
ear integral in the cases of Lagrange-Poisson and of kinetic symmetry of the body, as 
well as of the special linear integrals in the Hess-Applerot and Bobylev-Steklov cases. 

The author thanks V. V. Rumiantsev, L. M. Markhashov and L. G. Khazin for constant 
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attention and useful discussions. 
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An oblique regular reflection is considered of a plane shock wave from a rigid 
wall in a steady flow of a perfect, ideally dissociating gas with infinite conduc- 
tivity in the presence of a magnetic field normal to the plane of flow. A flow 
behind the reflected shock wave is studied in the vicinity of the triple point, i. e. 
the point at which the curvature of the shock wave becomes different from zero. 


